Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 801
Filtrar
1.
Sci Rep ; 14(1): 9156, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644369

RESUMO

Intervertebral Disc (IVD) degeneration has been associated with a chronic inflammatory response, but knowledge on the contribution of distinct IVD cells, namely CD44, to the progression of IVD degeneration remains elusive. Here, bovine nucleus pulposus (NP) CD44 cells were sorted and compared by gene expression and proteomics with the negative counterpart. NP cells were then stimulated with IL-1b (10 ng/ml) and dynamics of CD44 gene and protein expression was analyzed upon pro-inflammatory treatment. The results emphasize that CD44 has a multidimensional functional role in IVD metabolism, ECM synthesis and production of neuropermissive factors. CD44 widespread expression in NP was partially associated with CD14 and CD45, resulting in the identification of distinct cell subsets. In conclusion, this study points out CD44 and CD44-based cell subsets as relevant targets in the modulation of the IVD pro-inflammatory/degenerative cascade.


Assuntos
Receptores de Hialuronatos , Inflamação , Degeneração do Disco Intervertebral , Núcleo Pulposo , Animais , Bovinos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Inflamação/metabolismo , Inflamação/patologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Células Cultivadas , Interleucina-1beta/metabolismo , Proteômica/métodos
2.
BMC Musculoskelet Disord ; 25(1): 321, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654287

RESUMO

BACKGROUND: Increasing studies have shown degeneration of nucleus pulposus cells (NPCs) as an critical part of the progression of intervertebral disc degeneration (IVDD). However, there are relatively few studies on single-cell transcriptome contrasts in human degenerated NPCs. Moreover, differences in Wnt/Ca2+ signaling in human degenerated nucleus pulposus cells have not been elucidated. The aim of this study is to investigate the differential expression of Wnt/Ca2+ signaling pathway between normal and degenerated nucleus pulposus cells in humans and try to investigate its mechanism. METHODS: We performed bioinformatics analysis using our previously published findings to construct single cell expression profiles of normal and degenerated nucleus pulposus. Then, in-depth differential analysis was used to characterize the expression of Wnt/Ca2+ signaling pathway between normal and degenerated nucleus pulposus cells in humans. RESULTS: The obtained cell data were clustered into five different chondrocytes clusters, which chondrocyte 4 and chondrocyte 5 mainly accounted for a high proportion in degenerated nucleus pulposus tissues, but rarely in normal nucleus pulposus tissues. Genes associated within the Wnt/Ca2+ signaling pathway, such as Wnt5B, FZD1, PLC (PLCB1), CaN (PPP3CA) and NAFATC1 are mainly present in chondrocyte 3, chondrocyte 4 and chondrocyte 5 from degenerated nucleus pulposus tissues. In addition, as a receptor that activates Wnt signaling pathway, LRP5 is mainly highly expressed in chondrocyte 5 of degenerated nucleus pulposus cells. Six genes, ANGPTL4, PTGES, IGFBP3, GDF15, TRIB3 and TNFRSF10B, which are associated with apoptosis and inflammatory responses, and are widespread in chondrocyte 4 and chondrocyte 5, may be closely related to degenerative of nucleus pulposus cells. CONCLUSIONS: Single-cell RNA sequencing revealed differential expression of Wnt/Ca2+ signaling in human normal and degenerated nucleus pulposus cells, and this differential expression may be closely related to the abundance of chondrocyte 4 and chondrocyte 5 in degenerated nucleus pulposus cells. In degenerated nucleus pulposus cells, LRP5 activate Wnt5B, which promotes nucleus pulposus cell apoptosis and inflammatory response by regulating the Wnt/Ca2+ signaling pathway, thereby promoting disc degeneration. ANGPTL4, IGFBP3, PTGES in chondrocyte 4 and TRIB3, GDF15, TNFRSF10B in chondrocyte 5 may play an important role in this process.


Assuntos
Apoptose , Degeneração do Disco Intervertebral , Núcleo Pulposo , Análise de Célula Única , Via de Sinalização Wnt , Humanos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Via de Sinalização Wnt/genética , RNA-Seq , Masculino , Pessoa de Meia-Idade , Feminino , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Adulto , Sinalização do Cálcio/genética , Condrócitos/metabolismo , Condrócitos/patologia , Transcriptoma , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Análise da Expressão Gênica de Célula Única
3.
Mol Med ; 30(1): 44, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553713

RESUMO

BACKGROUND: Intervertebral disc degeneration (IVDD) is one of the etiologic factors of degenerative spinal diseases, which can lead to a variety of pathological spinal conditions such as disc herniation, spinal stenosis, and scoliosis. IVDD is a leading cause of lower back pain, the prevalence of which increases with age. Recently, Sirtuins/SIRTs and their related activators have received attention for their activity in the treatment of IVDD. In this paper, a comprehensive systematic review of the literature on the role of SIRTs and their activators on IVDD in recent years is presented. The molecular pathways involved in the regulation of IVDD by SIRTs are summarized, and the effects of SIRTs on senescence, inflammatory responses, oxidative stress, and mitochondrial dysfunction in myeloid cells are discussed with a view to suggesting possible solutions for the current treatment of IVDD. PURPOSE: This paper focuses on the molecular mechanisms by which SIRTs and their activators act on IVDD. METHODS: A literature search was conducted in Pubmed and Web of Science databases over a 13-year period from 2011 to 2024 for the terms "SIRT", "Sirtuin", "IVDD", "IDD", "IVD", "NP", "Intervertebral disc degeneration", "Intervertebral disc" and "Nucleus pulposus". RESULTS: According to the results, SIRTs and a large number of activators showed positive effects against IVDD.SIRTs modulate autophagy, myeloid apoptosis, oxidative stress and extracellular matrix degradation. In addition, they attenuate inflammatory factor-induced disc damage and maintain homeostasis during disc degeneration. Several clinical studies have reported the protective effects of some SIRTs activators (e.g., resveratrol, melatonin, honokiol, and 1,4-dihydropyridine) against IVDD. CONCLUSION: The fact that SIRTs and their activators play a hundred different roles in IVDD helps to better understand their potential to develop further treatments for IVDD. NOVELTY: This review summarizes current information on the mechanisms of action of SIRTs in IVDD and the challenges and limitations of translating their basic research into therapy.


Assuntos
Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Sirtuínas , Humanos , Degeneração do Disco Intervertebral/metabolismo , Deslocamento do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Estresse Oxidativo , Sirtuínas/metabolismo , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia
4.
Aging (Albany NY) ; 16(6): 5050-5064, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38517363

RESUMO

PURPOSE: This study explores the potential of Omilancor in treating Intervertebral Disc Degeneration (IDD) through MAP2K6 targeting. METHODS: We analyzed mRNA microarray datasets to pinpoint MAP2K6 as a key regulator implicated in IDD progression. Follow-up studies demonstrated that cisplatin (DDP) could prompt cellular senescence in vitro by upregulating MAP2K6 expression. Through molecular docking and other analyses, we identified Omilancor as a compound capable of binding to MAP2K6. This interaction effectively impeded the cellular senescence induced by DDP. RESULTS: We further showed that administration of Omilancor could significantly alleviate the degeneration of IVDs in annulus fibrosus puncture-induced rat model. CONCLUSIONS: Omilancor shows promise as a treatment for IDD by targeting MAP2K6-mediated cellular senescence.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Núcleo Pulposo , Ratos , Animais , Núcleo Pulposo/metabolismo , Simulação de Acoplamento Molecular , Degeneração do Disco Intervertebral/metabolismo , Senescência Celular/fisiologia , Anel Fibroso/metabolismo
5.
J Physiol ; 602(7): 1341-1369, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38544414

RESUMO

Intervertebral disc degeneration (IDD) poses a significant health burden, necessitating a deeper understanding of its molecular underpinnings. Transcriptomic analysis reveals 485 differentially expressed genes (DEGs) associated with IDD, underscoring the importance of immune regulation. Weighted gene co-expression network analysis (WGCNA) identifies a yellow module strongly correlated with IDD, intersecting with 197 DEGs. Protein-protein interaction (PPI) analysis identifies ITGAX, MMP9 and FCGR2A as hub genes, predominantly expressed in macrophages. Functional validation through in vitro and in vivo experiments demonstrates the pivotal role of FCGR2A in macrophage polarization and IDD progression. Mechanistically, FCGR2A knockdown suppresses M1 macrophage polarization and NF-κB phosphorylation while enhancing M2 polarization and STAT3 activation, leading to ameliorated IDD in animal models. This study sheds light on the regulatory function of FCGR2A in macrophage polarization, offering novel insights for IDD intervention strategies. KEY POINTS: This study unveils the role of FCGR2A in intervertebral disc (IVD) degeneration (IDD). FCGR2A knockdown mitigates IDD in cellular and animal models. Single-cell RNA-sequencing uncovers diverse macrophage subpopulations in degenerated IVDs. This study reveals the molecular mechanism of FCGR2A in regulating macrophage polarization. This study confirms the role of the NF-κB/STAT3 pathway in regulating macrophage polarization in IDD.


Assuntos
Degeneração do Disco Intervertebral , Receptores de IgG , Animais , Perfilação da Expressão Gênica , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Macrófagos , NF-kappa B/genética , NF-kappa B/metabolismo , Núcleo Pulposo/metabolismo , Humanos , Ratos , Receptores de IgG/metabolismo
6.
J Clin Invest ; 134(6)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38488012

RESUMO

As the leading cause of disability worldwide, low back pain (LBP) is recognized as a pivotal socioeconomic challenge to the aging population and is largely attributed to intervertebral disc degeneration (IVDD). Elastic nucleus pulposus (NP) tissue is essential for the maintenance of IVD structural and functional integrity. The accumulation of senescent NP cells with an inflammatory hypersecretory phenotype due to aging and other damaging factors is a distinctive hallmark of IVDD initiation and progression. In this study, we reveal a mechanism of IVDD progression in which aberrant genomic DNA damage promoted NP cell inflammatory senescence via activation of the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) axis but not of absent in melanoma 2 (AIM2) inflammasome assembly. Ataxia-telangiectasia-mutated and Rad3-related protein (ATR) deficiency destroyed genomic integrity and led to cytosolic mislocalization of genomic DNA, which acted as a powerful driver of cGAS/STING axis-dependent inflammatory phenotype acquisition during NP cell senescence. Mechanistically, disassembly of the ATR-tripartite motif-containing 56 (ATR-TRIM56) complex with the enzymatic liberation of ubiquitin-specific peptidase 5 (USP5) and TRIM25 drove changes in ATR ubiquitination, with ATR switching from K63- to K48-linked modification, c thereby promoting ubiquitin-proteasome-dependent dynamic instability of ATR protein during NP cell senescence progression. Importantly, an engineered extracellular vesicle-based strategy for delivering ATR-overexpressing plasmid cargo efficiently diminished DNA damage-associated NP cell senescence and substantially mitigated IVDD progression, indicating promising targets and effective approaches to ameliorate the chronic pain and disabling effects of IVDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Idoso , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Envelhecimento , Senescência Celular , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Disco Intervertebral/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
7.
Drug Des Devel Ther ; 18: 493-512, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405577

RESUMO

Background: Intervertebral disc degeneration (IVDD) is a pathophysiological process that leads to severe back pain or neurological deficits. The Bushen Huoxue Formula (BSHXF) is a traditional herbal remedy widely used to treat diseases related to IVDD. However, its pharmacological mechanism needs further exploration. Objective: This study aimed to elucidate the mechanisms through which BSHXF treats IVDD-related diseases by integrating metabolomics with network pharmacology. Methods: Network pharmacology was utilized to identify potential targets of BSHXF against IVDD. Additionally, an animal model of needle puncture-induced disc degeneration was established to assess the effect of BSHXF. Mice were randomly assigned to the sham group, model group, and BSHXF group. Various techniques, including PCR, CCK-8 assay, MRI, histological examinations, and immunohistochemical analyses, were employed to evaluate degenerative and oxidative stress conditions in mouse disc tissue and cultured nucleus pulposus (NP) cells. UHPLC-HRMS/MS was used to differential distinct metabolites in the disc tissue from different groups, and MetaboAnalyst 5.0 was employed to enrich the metabolic pathways. Results: Through network pharmacology, 15 core proteins were identified through protein-protein interaction (PPI) network construction. Functional enrichment analysis highlighted the critical role of BSHXF in addressing IVDD by influencing the response to oxidative stress. Furthermore, experimental evidence demonstrated that BSHXF significantly improved the pathological progression of IVDD and increased oxidative stress markers SOD-1 and GPX1, both in the disc degeneration model and cultured NP cells. Metabolomics identified differential metabolites among the three groups, revealing 15 metabolic pathways between the sham and model groups, and 13 metabolic pathways enriched between the model and BSHXF groups. Conclusion: This study, integrating network pharmacology and metabolomics, suggests that BSHXF can alleviate IVDD progression by modulating oxidative stress. Key metabolic pathways associated with BSHXF-mediated reduction of oxidative stress include the citrate cycle, cysteine and methionine metabolism, alanine, aspartate and glutamate metabolism, glycine, serine and threonine metabolism, D-glutamine and D-glutamate metabolism, glutathione metabolism, and tryptophan metabolism. While this research demonstrates the therapeutic potential of BSHXF in reducing oxidative stress levels in IVDD, further research is needed to thoroughly understand its underlying mechanisms.


Assuntos
Medicamentos de Ervas Chinesas , Degeneração do Disco Intervertebral , Núcleo Pulposo , Ratos , Camundongos , Animais , Degeneração do Disco Intervertebral/metabolismo , Ratos Sprague-Dawley , Farmacologia em Rede , Núcleo Pulposo/metabolismo
8.
J Acupunct Meridian Stud ; 17(1): 28-37, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38409812

RESUMO

Background: : Warm acupuncture (WA) has analgesic and anti-inflammatory effects. However, the underlying mechanism of these effects remain unclear. Objectives: : To explore the analgesic and anti-inflammatory effects of WA and the potential underlying mechanism in male Sprague-Dawley rats with non-compressive lumbar disk herniation (LDH) caused by autologous nucleus pulposus (NP) transplantation. Methods: : We used low-frequency (2 Hz) electrical stimulation and WA (40℃) to treat GB30 and BL54 acupoints in rats for 30 mins per day. We monitored the paw withdrawal threshold of rats during the experiment and measured serum cytokine levels using commercial kits. Dorsal root ganglion (DRG) tissue pathology was analyzed via H&E staining. We used qRT-PCR to measure the mRNA expression levels of IL-1ß, IL-6, and TNF-α genes in DRG. Western blot was used to analyze the expression levels of IL-1ß, IL-6, TNFα, P-p38MAPK, p38MAPK, P-IκBα, IκB α, and NF-κB p65 proteins. Results: : WA treatment significantly increased the pain threshold of rats, reduced serum IL-6, PEG2, NO, SP, NP-Y, and MMP-3 levels, and effected histopathological improvements in the DRG in rats. Moreover, WA treatment significantly downregulated the expression levels of inflammation-associated genes (Il-1ß, Il-6, and Tnf-α) and proteins (IL-1ß, IL-6, TNF-α, P-p38MAPK, P-IκBα, and NF-κB p65) in the DRG of non-compressive LDH rats. Conclusion: : WA can alleviate pain and inhibit inflammatory response in rats with non-compressive LDH caused by autologous NP transplantation, and these effects are likely associated with the inhibition of the p38MAPK/NF-κB pathway.


Assuntos
Terapia por Acupuntura , Deslocamento do Disco Intervertebral , Núcleo Pulposo , Ratos , Masculino , Animais , Deslocamento do Disco Intervertebral/terapia , Deslocamento do Disco Intervertebral/complicações , Deslocamento do Disco Intervertebral/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , Núcleo Pulposo/metabolismo , Dor , Inflamação/terapia , Inflamação/complicações , Anti-Inflamatórios/farmacologia , Analgésicos
9.
Pharmacol Res ; 202: 107119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417775

RESUMO

Intervertebral disc (IVD) degeneration is a frequent cause of low back pain and is the most common cause of disability. Treatments for symptomatic IVD degeneration, including conservative treatments such as analgesics, physical therapy, anti-inflammatories and surgeries, are aimed at alleviating neurological symptoms. However, there are no effective treatments to prevent or delay IVD degeneration. Previous studies have identified risk factors for IVD degeneration such as aging, inflammation, genetic factors, mechanical overload, nutrient deprivation and smoking, but metabolic dysfunction has not been highlighted. IVDs are the largest avascular structures in the human body and determine the hypoxic and glycolytic features of nucleus pulposus (NP) cells. Accumulating evidence has demonstrated that intracellular metabolic dysfunction is associated with IVD degeneration, but a comprehensive review is lacking. Here, by reviewing the physiological features of IVDs, pathological processes and metabolic changes associated with IVD degeneration and the functions of metabolic genes in IVDs, we highlight that glycolytic pathway and intact mitochondrial function are essential for IVD homeostasis. In degenerated NPs, glycolysis and mitochondrial function are downregulated. Boosting glycolysis such as HIF1α overexpression protects against IVD degeneration. Moreover, the correlations between metabolic diseases such as diabetes, obesity and IVD degeneration and their underlying molecular mechanisms are discussed. Hyperglycemia in diabetic diseases leads to cell senescence, the senescence-associated phenotype (SASP), apoptosis and catabolism of extracellualr matrix in IVDs. Correcting the global metabolic disorders such as insulin or GLP-1 receptor agonist administration is beneficial for diabetes associated IVD degeneration. Overall, we summarized the recent progress of investigations on metabolic contributions to IVD degeneration and provide a new perspective that correcting metabolic dysfunction may be beneficial for treating IVD degeneration.


Assuntos
Diabetes Mellitus , Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Glicólise , Diabetes Mellitus/metabolismo
10.
Int J Biol Macromol ; 262(Pt 1): 129950, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320636

RESUMO

Intervertebral disc degeneration (IVDD) contributes largely to low back pain. Recent studies have highlighted the exacerbating role of diabetes mellitus (DM) in IVDD, mainly due to the influence of hyperglycemia (HG) or the accumulation of advanced glycation end products (AGEs). Vascular endothelial growth factor A (VEGFA) newly assumed a distinct impact in nonvascular tissues through mitophagy regulation. However, the combined actions of HG and AGEs on IVDD and the involved role of VEGFA remain unclear. We confirmed the potential relation between VEGFA and DM through bioinformatics and biological specimen detection. Then we observed that AGEs induced nucleus pulposus (NP) cell degeneration by upregulating cellular reactive oxygen species (ROS), and HG further aggravated ROS level through breaking AGEs-induced protective mitophagy. Furthermore, this adverse effect could be strengthened by VEGFA knockdown. Importantly, we identified that the regulation of VEGFA and mitophagy were vital mechanisms in AGEs-HG-induced NP cell degeneration through Parkin/Akt/mTOR and AMPK/mTOR pathway. Additionally, VEGFA overexpression through local injection with lentivirus carrying VEGFA plasmids significantly alleviated NP degeneration and IVDD in STZ-induced diabetes and puncture rat models. In conclusion, the findings first confirmed that VEGFA protects against AGEs-HG-induced IVDD, which may represent a therapeutic strategy for DM-related IVDD.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Ratos , Animais , Regulação para Baixo , Núcleo Pulposo/metabolismo , Mitofagia/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Glucose/metabolismo , Apoptose
11.
Cell Biol Int ; 48(4): 389-403, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38317355

RESUMO

Degeneration of intervertebral discs is considered one of the most important causes of low back pain and disability. The intervertebral disc (IVD) is characterized by its susceptibility to various stressors that accelerate the senescence and apoptosis of nucleus pulposus cells, resulting in the loss of these cells and dysfunction of the intervertebral disc. Therefore, how to reduce the loss of nucleus pulposus cells under stress environment is the main problem in treating intervertebral disc degeneration. Autophagy is a kind of programmed cell death, which can provide energy by recycling substances in cells. It is considered to be an effective method to reduce the senescence and apoptosis of nucleus pulposus cells under stress. However, further research is needed on the mechanisms by which autophagy of nucleus pulposus cells is regulated under stress environments. M6A methylation, as the most extensive RNA modification in eukaryotic cells, participates in various cellular biological functions and is believed to be related to the regulation of autophagy under stress environments, may play a significant role in nucleus pulposus responding to stress. This article first summarizes the effects of various stressors on the death and autophagy of nucleus pulposus cells. Then, it summarizes the regulatory mechanism of m6A methylation on autophagy-related genes under stress and the role of these autophagy genes in nucleus pulposus cells. Finally, it proposes that the methylation modification of autophagy-related genes regulated by m6A may become a new treatment approach for intervertebral disc degeneration, providing new insights and ideas for the clinical treatment of intervertebral disc degeneration.


Assuntos
Adenina/análogos & derivados , Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Degeneração do Disco Intervertebral/metabolismo , Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Autofagia , Apoptose , Metilação
12.
Eur Rev Med Pharmacol Sci ; 28(2): 446-456, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38305591

RESUMO

OBJECTIVE: The aim of the study was to explore the expression of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT)/hypoxia-induced factor-1 alpha (HIF-1α) signaling pathway and the apoptosis of nucleus pulposus cells (NPCs) under different oxygen concentrations to clarify the biological characteristics of NPCs and the molecular mechanism of intervertebral disc degeneration (IVDD). MATERIALS AND METHODS: Normal and degenerated human NPCs were collected. Leibovitz's medium with 100 µmol/L CoCl2 was used to establish a hypoxic culture environment, and 100 µmol/L H2O2 was used to establish an oxidative stress culture environment. Third-generation NPCs were divided into 6 groups: normal NPCs + hypoxia, normal NPCs + normoxia, normal NPCs + oxidative stress, degenerated NPCs + hypoxia, degenerated NPCs + normoxia, and degenerated NPCs + oxidative stress. Normal NPCs + hypoxia was used as the experimental control group. Cell viability and proliferation were detected by using the Cell Counting Kit-8 (CCK-8) method. Cell apoptosis rate was assessed by flow cytometry, and expression levels of PI3K, AKT, and HIF-1α were determined by Real-Time-Polymerase Chain Reaction (RT-PCR) and Western blotting. RESULTS: The cell proliferation rate of both normal and degenerated NPCs decreased with increasing oxygen concentration. Conversely, the apoptosis rate increased as the oxygen concentration increased (p<0.05). Compared with the control group, whether the cells degenerated had a very significant impact on the apoptosis rate (p<0.001), and oxygen concentration also had a highly significant impact on both the cell proliferation rate and apoptosis rate (both p<0.001). The interaction between cell degeneration and oxygen concentration significantly affected both cell proliferation and apoptosis rates (p<0.05). Considering the expression levels of PI3K, AKT, and HIF-1α, normal NPCs had the highest levels under low oxygen concentrations, followed by oxidative stress and normoxia. In degenerated NPCs, the expression levels also decrease as the oxygen concentration increases. CONCLUSIONS: The PI3K/Akt/HIF-1α signaling pathway plays a significant role in inhibiting oxidative stress, antagonizing NPC apoptosis, and consequently delaying IVDD.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Núcleo Pulposo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Peróxido de Hidrogênio/farmacologia , Transdução de Sinais , Degeneração do Disco Intervertebral/metabolismo , Estresse Oxidativo , Hipóxia/metabolismo , Oxigênio/metabolismo , Apoptose
13.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 233-238, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372089

RESUMO

Intervertebral disc degeneration (IDD) is the major cause of degeneration of joint diseases. IDD is characterized by a large number of apoptosis of nucleus pulposus cells (NPCs) and extracellular matrix (ECM) degradation. Ginsenoside Rg3 is the active component extracted from ginseng and has a vital function in modulating diseases. This study aimed to investigate the regulatory functions of ginsenoside Rg3 in IDD. We established the IDD cell model via inducing NPCs with IL-1ß. The rat model of IDD was established by fibrous ring puncture method. Cell apoptotic capability was assessed through TUNEL assay. The levels of catabolic proteases MMPs and ADAMTSs were tested by western blot and RT-qPCR. IL-1ß induction notably promoted the apoptosis of NPCs, while ginsenoside Rg3 treatment reversed the promoting function of IL-1ß. Furthermore, we found that MMP2, MMP3, Adamts4, and Adamts5 levels were increased in IL-1ß-induced NPCs, while ginsenoside Rg3 treatment markedly reduced their levels. Additionally, ginsenoside Rg3 was found to suppress the IL-1ß-stimulated p38 MAPK pathway in NPCs. In the IDD rat model, we found that ginsenoside Rg3 treatment can alleviate NPC degeneration, recover the arrangement of annulus fibrous, and preserve more proteoglycan matrix. Moreover, ginsenoside Rg3 reduced apoptosis and catabolism and inactivated the p38 MAPK pathway in IDD rats. Ginsenoside Rg3 exhibits anti-catabolic and anti-apoptotic effects in IL-1ß-stimulated NPCs and IDD rats by inactivating MAPK pathway.


Assuntos
Ginsenosídeos , Degeneração do Disco Intervertebral , Núcleo Pulposo , Humanos , Ratos , Animais , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Células Cultivadas , Apoptose , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 194-199, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372093

RESUMO

The goals of this study were to investigate whether Wnt/ß-catenin signaling plays a role in hypo-osmolality-related degeneration of nucleus pulposus (NP) cells, and if so, to define the mechanism underlying AQP1 in this effect. Human NP cells were cultured under hypo-osmotic (300/350/400 mOsm) and iso-osmotic (450 mOsm) conditions. The cell viability, AQP1, the expression of Wnt/ß-catenin signaling, collagen II/I, and MMP3/9 were evaluated. To determine the effects of the Wnt/ß-catenin signaling, we used the inhibitor and the activator of Wnt during the hypo-osmotic culture of NP cells. We also examined whether the silencing and overexpressing of the AQP1 gene would affect the Wnt/ß-catenin expression in NP cells. Hypo-osmolality caused NP cell degeneration and activated the Wnt/ß-catenin signaling but suppressed the AQP1 level. Inhibiting the Wnt/ß-catenin signaling alleviated the hypo-osmolality-induced NP cell degeneration. On the contrary, activating Wnt/ß-catenin aggravated the NP cell degeneration under hypo-osmotic conditions, which did not affect AQP1 expression. AQP1-overexpressed NP cells exhibited decreased Wnt/ß-catenin signaling and alleviated cell degeneration under the hypo-osmotic condition. Besides, AQP1 silencing accelerated NP cell degeneration and activated Wnt/ß-catenin expression compared with untreated control. Hypo-osmolality promotes NP cell degeneration via activating Wnt/ß-catenin signaling, which is suppressed by AQP1 expression. The upregulation of AQP1 suppressed the Wnt/ß-catenin signaling and alleviated the hypo-osmolality induced by the NP cell degeneration.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Humanos , Núcleo Pulposo/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Células Cultivadas , Via de Sinalização Wnt/fisiologia , Aquaporina 1/genética , Aquaporina 1/metabolismo
15.
Adv Healthc Mater ; 13(8): e2303206, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224563

RESUMO

Intervertebral disc degeneration (IVDD) is invariably accompanied by excessive accumulation of reactive oxygen species (ROS), resulting in progressive deterioration of mitochondrial function and senescence in nucleus pulposus cells (NPCs). Significantly, the main ROS production site in non-immune cells is mitochondria, suggesting mitochondria is a feasible therapeutic target to reverse IVDD. Triphenylphosphine (TPP), which is known as mitochondrial-tropic ligands, is utilized to modify carbon dot-supported Prussian blue (CD-PB) to scavenge superfluous intro-cellular ROS and maintain NPCs at normal redox levels. CD-PB-TPP can effectively escape from lysosomal phagocytosis, permitting efficient mitochondrial targeting. After strikingly lessening the ROS in mitochondria via exerting antioxidant enzyme-like activities, such as superoxide dismutase, and catalase, CD-PB-TPP rescues damaged mitochondrial function and NPCs from senescence, catabolism, and inflammatory reaction in vitro. Imaging evaluation and tissue morphology assessment in vivo suggest that disc height index, mean grey values of nucleus pulposus tissue, and histological morphology are significantly improved in the IVDD model after CD-PB-TPP is locally performed. In conclusion, this study demonstrates that ROS-induced mitochondrial dysfunction and senescence of NPCs leads to IVDD and the CD-PB-TPP possesses enormous potential to rescue this pathological process through efficient removal of ROS via targeting mitochondria, supplying a neoteric strategy for IVDD treatment.


Assuntos
Ferrocianetos , Degeneração do Disco Intervertebral , Núcleo Pulposo , Humanos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Degeneração do Disco Intervertebral/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias
16.
Cell Mol Life Sci ; 81(1): 24, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212432

RESUMO

The accumulation of metabolites in the intervertebral disc is considered an important cause of intervertebral disc degeneration (IVDD). Lactic acid, which is a metabolite that is produced by cellular anaerobic glycolysis, has been proven to be closely associated with IVDD. However, little is known about the role of lactic acid in nucleus pulposus cells (NPCs) senescence and oxidative stress. The aim of this study was to investigate the effect of lactic acid on NPCs senescence and oxidative stress as well as the underlying mechanism. A puncture-induced disc degeneration (PIDD) model was established in rats. Metabolomics analysis revealed that lactic acid levels were significantly increased in degenerated intervertebral discs. Elimination of excessive lactic acid using a lactate oxidase (LOx)-overexpressing lentivirus alleviated the progression of IVDD. In vitro experiments showed that high concentrations of lactic acid could induce senescence and oxidative stress in NPCs. High-throughput RNA sequencing results and bioinformatic analysis demonstrated that the induction of NPCs senescence and oxidative stress by lactic acid may be related to the PI3K/Akt signaling pathway. Further study verified that high concentrations of lactic acid could induce NPCs senescence and oxidative stress by interacting with Akt and regulating its downstream Akt/p21/p27/cyclin D1 and Akt/Nrf2/HO-1 pathways. Utilizing molecular docking, site-directed mutation and microscale thermophoresis assays, we found that lactic acid could regulate Akt kinase activity by binding to the Lys39 and Leu52 residues in the PH domain of Akt. These results highlight the involvement of lactic acid in NPCs senescence and oxidative stress, and lactic acid may become a novel potential therapeutic target for the treatment of IVDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Ratos , Animais , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Disco Intervertebral/metabolismo , Senescência Celular
17.
Int J Med Sci ; 21(2): 341-356, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169592

RESUMO

The in-situ osmolarity is an important physicochemical factor that regulates cell fate of nucleus pulposus cells (NPCs). Our previous studies demonstrated that reduced N-cadherin (NCDH) expression in nucleus pulposus cells is associated with cellular damage under hyper-osmolarity microenvironment. This study was aimed at exploring the impacts of NCDH on senescence and apoptosis of NPCs, as well as the potential molecular mechanism. By comparing NPCs from patients with lumbar fractures and lumbar disc herniation, we identified a correlation between decreased NCDH expression and increased endoplasmic reticulum stress (ERS), resulting in undesirable cell fate (senescence and apoptosis). After blocking Reactive oxygen species (ROS) or ERS, it was indicated that hyper-osmolarity microenvironment induced ERS was ROS-dependent. Further results demonstrated the correlation in rat NPCs. Upregulation of NCDH expression reduced ROS-dependent ERS, thus limiting undesirable cell fates in vitro. This was further confirmed through the rat tail acupuncture injection model. NCDH overexpression successfully mitigated ERS, preserved extracellular matrix production and alleviating intervertebral disc degeneration in vivo. Together, NCDH can alleviate senescence and apoptosis of NPCs by suppressing ROS-dependent ERS via the ATF4-CHOP signaling axis in the hyper-osmolarity microenvironment, thus highlighting the therapeutic potential of NCDH in combating degenerative disc diseases.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Animais , Humanos , Ratos , Apoptose/genética , Caderinas/genética , Caderinas/metabolismo , Senescência Celular/genética , Estresse do Retículo Endoplasmático/genética , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/terapia , Núcleo Pulposo/metabolismo , Concentração Osmolar , Espécies Reativas de Oxigênio/metabolismo
18.
Nat Commun ; 15(1): 47, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167807

RESUMO

Intervertebral disc degeneration is a natural process during aging and a leading cause of lower back pain. Here, we generate a comprehensive atlas of nucleus pulposus cells using single-cell RNA-seq analysis of human nucleus pulposus tissues (three males and four females, age 41.14 ± 18.01 years). We identify fibrotic late-stage nucleus pulposus cells characterized by upregulation of serglycin expression which facilitate the local inflammatory response by promoting the infiltration of inflammatory cytokines and macrophages. Finally, we discover that daphnetin, a potential serglycin ligand, substantially mitigates the local inflammatory response by downregulating serglycin expression in an in vivo mouse model, thus alleviating intervertebral disc degeneration. Taken together, we identify late-stage nucleus pulposus cells and confirm the potential mechanism by which serglycin regulates intervertebral disc degeneration. Our findings indicate that serglycin is a latent biomarker of intervertebral disc degeneration and may contribute to development of diagnostic and therapeutic strategies.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Masculino , Feminino , Humanos , Animais , Camundongos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Proteoglicanas , Biomarcadores , Disco Intervertebral/metabolismo
19.
Int J Biol Sci ; 20(2): 701-717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169523

RESUMO

Intervertebral disc degeneration (IDD) is a prevalent degenerative disorder that closely linked to aging. Numerous studies have indicated the crucial involvement of autophagy in the development of IDD. However, the non-selective nature of autophagy substrates poses great limitations on the application of autophagy-related medications. This study aims to enhance our comprehension of autophagy in the development of IDD and investigate a novel therapeutic approach from the perspective of selective autophagy receptor NBR1. Proteomics and immunoprecipitation and mass spectrometry analysis, combined with in vivo and in vitro experimental verification were performed. NBR1 is found to be reduced in IDD, and NBR1 retards cellular senescence and senescence-associated secretory phenotype (SASP) of nucleus pulposus cells (NPCs), primarily through its autophagy-dependent function. Mechanistically, NBR1 knockdown leads to the accumulation of S1 RNA-binding domain-containing protein 1 (SRBD1), which triggers cellular senescence via AKT1/p53 and RB/p16 pathways, and promotes SASP via NF-κß pathway in NPCs. Our findings reveal the function and mechanism of selective autophagy receptor NBR1 in regulating NPCs senescence and degeneration. Targeting NBR1 to facilitate the clearance of detrimental substances holds the potential to provide novel insights for IDD treatment.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Humanos , Núcleo Pulposo/metabolismo , Senescência Celular/genética , Envelhecimento , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Autofagia/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a RNA/metabolismo
20.
Aging (Albany NY) ; 16(1): 685-700, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38217540

RESUMO

BACKGROUND: Extracellular matrix metabolism dysregulation in nucleus pulposus (NP) cells represents a crucial pathophysiological feature of intervertebral disc degeneration (IDD). Our study elucidates the role and mechanism of Testis expressed 11 (TEX11, also called ZIP4) extracellular matrix degradation in the NP. MATERIALS AND METHODS: Interleukin-1ß (IL-1ß) and H2O2 were used to treat NP cells to establish an IDD cell model. Normal NP tissues and NP tissues from IDD patients were harvested. ZIP4 mRNA and protein profiles in NP cells and tissues were examined. Enzyme-linked immunosorbent assay (ELISA) confirmed the profiles of TNF-α, IL-6, MDA, and SOD in NP cells. The alterations of reactive oxygen species (ROS), lactate dehydrogenase (LDH), COX2, iNOS, MMP-3, MMP-13, collagen II, aggrecan, FoxO3a, histone deacetylase 4 (HDAC4), Sirt1 and NF-κB levels in NP cells were determined using different assays. RESULTS: The ZIP4 profile increased in the NP tissues of IDD patients and IL-1ß- or H2O2-treated NP cells. ZIP4 upregulation bolstered inflammation and oxidative stress in NP cells undergoing IL-1ß treatment and exacerbated their extracellular matrix degradation, whereas ZIP4 knockdown produced the opposite outcome. Mechanistically, ZIP4 upregulated HDAC4 and enhanced NF-κB phosphorylation while repressing Sirt1 and FoxO3a phosphorylation levels. HDAC4 knockdown or Sirt1 promotion attenuated the effects mediated by ZIP4 overexpression in NP cells. CONCLUSIONS: ZIP4 upregulation aggravates the extracellular matrix (ECM) degradation of NP cells by mediating inflammation and oxidative stress through the HDAC4-FoxO3a axis.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Humanos , Masculino , Células Cultivadas , Matriz Extracelular/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Inflamação/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , NF-kappa B/metabolismo , Núcleo Pulposo/metabolismo , Estresse Oxidativo , Proteínas Repressoras/metabolismo , Sirtuína 1/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...